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Fast forced liquid film spreading on a substrate:
flow, heat transfer and phase transition
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This theoretical study is devoted to description of fluid flow and heat transfer in a
spreading viscous drop with phase transition. A similarity solution for the combined
full Navier–Stokes equations and energy equation for the expanding lamella generated
by drop impact is obtained for a general case of oblique drop impact with high Weber
and Reynolds numbers. The theory is applicable to the analysis of the phenomena of
drop solidification, target melting and film boiling. The theoretical predictions for the
contact temperature at the substrate surface agree well with the existing experimental
data.

1. Introduction
The flow produced by isothermal drop impact onto a dry substrate is governed by

inertial, viscous and capillary effects. The main dimensionless parameters determining
the outcome of drop impact are therefore the Reynolds number, Re = D0W0/ν, and
the Weber number, We = ρD0W

2
0 /σ , where D0 and W0 are the initial drop diameter

and impact velocity, ν, ρ and σ are the kinematic viscosity, density and surface
tension, respectively. If the Weber number is small, the wettability of the surface also
affects the drop spreading (Bico, Marzolin & Quéré 1999; Mock et al. 2005). The
target properties, for example, its shape (Bakshi, Roisman & Tropea 2007), roughness
(Range & Feuillebois 1998), elasticity (Pepper, Courbin & Stone 2008) or porosity
(Kellay 2005), can influence the liquid flow and even enhance or reduce splashing.

Comprehensive reviews of studies in the field of drop impact can be found in Rein
(2000), Tropea & Roisman (2005), Ukiwe & Kwok (2005), Yarin (2006) and elsewhere.
Yarin & Weiss (1995) investigated experimentally and modelled periodic impact and
splash produced by a train of drops. Their important theoretical results are also
highly relevant to the description of a single drop impact onto a dry substrate with
high Reynolds and high Weber numbers. In particular, recent experiments (Bakshi
et al. 2007) show that the remote asymptotic solution developed by Yarin & Weiss
(1995) predicts well the flow distribution in the expanding lamella and the evolution
of its thickness. Roisman, Berberović & Tropea (2009) show that at high Weber and
Reynolds numbers the thickness evolution of the expanding lamella is almost not
influenced by the liquid viscosity or surface tension. In Roisman (2009) a self-similar
solution of the full Navier–Stokes equations for isothermally spreading viscous lamella
has been obtained. This solution allows us to predict the residual film thickness formed
by drop impact and maximum spreading diameter.

† Email address for correspondence: roisman@sla.tu-darmstadt.de
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Flow in a spreading drop determines not only the outcome of drop impact and the
residual film thickness. In some applications, for example in the case of inkjet printing
of microarrays of bio-molecules (Dijksman & Pierik 2008), the flow in a spreading
drop transports the capture probes on the surface of a solid support and determines
the quality of the array.

The phenomena of non-isothermal drop impact is much more complicated, since
additional influencing parameters related to heat transfer and to the temperature
dependence of the material properties have to be accounted for. In many cases drop
spreading is followed by various phase change processes in the near-wall region,
including drop solidification, vaporization and substrate melting.

Solidification of a spreading drop and remelting of target are the phenomena
relevant to the technology of spray forming (Orme 1993), plasma spray coating
(Fauchais et al. 2004), surface mount technologies (Attinger, Zhao & Poulikakos
2000), microfabrication (Steirer et al. 2009) and inkjet printing. The mechanism of
spreading and solidification of supercooled drops on an aircraft wing determines
the process of ice accretion (Miller, Lynch & Tate 2002), which can influence the
aerodynamics of the aircraft.

The hydrodynamics and heat transfer of a spreading drop determine the geometry
of splat, its thickness and diameter. Drop solidification in some cases (if the Weber
and Reynolds numbers are high enough) can enhance the flow instability and lead to
splash (Dhiman & Chandra 2005). When the initial drop temperature is high enough,
drop impact can lead to the substrate remelting (Amon et al. 1996).

The study of drop impact and its vaporization on a very hot surface is relevant to
spray cooling, to interaction of spray with walls of internal combustion engines and
to spray/wall interactions during atomization in air-blast atomizers in gas turbines.
If the substrate temperature is above the Leidenfrost point, a thin vapour layer is
created, preventing a direct contact between the liquid and the solid substrate. This
phenomenon, called film boiling, influences significantly the outcome of the drop
impact.

The outcome of drop impact is only very slightly influenced by the wall temperature
if it is below the Leidenfrost temperature. At the Leidenfrost temperature the flow
changes significantly. Various breakup modes observed in experiments of Senda et al.
(1988) at various surface temperatures and impact parameters can be subdivided
onto (i) rebound, (ii) breakup and rebound, (iii) breakup due to the vapour blowing
through the liquid lamella, (iv) droplet ejection from the upper surface of the lamella,
(v) complete lamella disintegration, (vi) complete lamella disintegration followed
by the very fast radial motion of the fragments. Generally, when the initial wall
temperature increases, the breakup of the impacting drop onto a myriad of very small
secondary droplets happens earlier (Manzello & Yang 2002).

The fundamentals of the near-wall liquid vaporization (Carey 2007) and
solidification (Worster 2000) are well known. However, the problem which considers
instationary, non-axisymmetric flow in a fast spreading drop, instationary temperature
field in the liquid and solid regions and phase transition in the near-wall region has
not been yet solved analytically. If a drop impacts onto a solid surface it generates a
radially expanding flow in a lamella bounded by a rim. The dynamics of the rim is
determined by surface tension, inertia of the liquid entering the rim from the lamella
and forces associated with wettability. If the impact velocity is high enough, i.e. the
Reynolds and Weber numbers are much higher than unity, the rim motion does not
influence the flow in the lamella (Roisman et al. 2009). The present study is focused
on the theoretical description of the hydrodynamics, heat transfer and phase change
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Figure 1. Sketches of an axisymmetric spreading film (a) and of non-axisymmetric
spreading film (b) generated by drop impact.

in a spreading liquid film applicable to the flow in the lamella generated by normal or
inclined drop impact. We obtain a similarity solution for the combined continuity, full
Navier–Stokes and energy equations in the case when the thermodynamic parameters
of the materials depend on the local temperature, phase state and material. The theory
is able to predict the rate of propagation of the phase transition front, heat fluxes at
the interfaces and contact temperatures. The theoretical predictions for the contact
temperature at the surface of the solid substrate agrees well with the experimental
data. The analysis explains the heat transfer enhancement associated with the film
spreading.

2. Remote asymptotic solution for the flow in a spreading lamella
Consider a normal drop impact onto a planar rigid wall (see figure 1a). If the

Reynolds and Weber numbers are high, the radially expanding flow in the lamella
can be described well in the cylindrical coordinate system {r, ϕ, z} with the unit base
vectors {er , eϕ, ez} by the remote asymptotic solution (Yarin & Weiss 1995)

v0 =
rer − 2zez

t + τ
. (2.1)

In the case of oblique drop impact the flow is no longer axisymmetric, since the
initial transverse component of the impact velocity initiates a translational motion
in the x direction. Consider now a Cartesian coordinate system {x, y, z} with the
unit base vectors {ex, ey, ez}, shown in figure 1(b). In this coordinate system the
drop impact velocity is represented as V = −W0ez + U0ex , where W0 and U0 are
the normal and tangential components of the impact velocity. The inviscid flow
in the lamella generated by inclined drop impact can be obtained as a translation of
the axisymmetric flow (2.1) with the velocity U0ex (Roisman & Tropea 2002). The
resulting flow can be written in the Cartesian coordinate system as

v0 =
(x − xc)ex + yey − 2zez

t + τ
+ U0ex, xc = U0t. (2.2)
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In the numerical simulations of normal drop impact (Roisman et al. 2009), it was
shown that the value of the constant τ does not depend on the impact parameters
and is of order τ ≈ 0.25D0/W0. It is therefore much smaller than the characteristic
time of drop impact D0/W0 and can be neglected at long times after impact. The
remote asymptotic solution for the flow in the lamella is therefore

v0 =
(x + U0τ )ex + yey − 2zez

t
. (2.3)

It can be shown that this flow satisfies exactly the continuity and momentum
balance equations even if the liquid viscosity is significant. However, this velocity field
does not satisfy the no-slip conditions at the wall. In order to determine the solution
of the problem which accounts for the wall effects, the full Navier–Stokes equations
have to be considered.

3. Similarity solution for the velocity and temperature fields over entire region
3.1. Problem formulation

Consider now a problem analogous to Stokes’ first problem for an inclined drop
impact onto a solid semi-infinite substrate accounting for the heat convection in the
spreading lamella, heat conduction in the substrate and possible phase transition
initiated at their contact region. The possible phase transition phenomena include
wall remelting, drop solidification or vaporization. The initial temperatures of the
drop, Td0, and of the substrate, Tw0, are assumed to be uniform.

Let us determine a viscous flow v = uex +vey +wez and the temperature distribution
T in the spreading lamella and in the wall which satisfy the following initial and
boundary conditions:

(v − v0) × ez = 0, T = Td0 at z → ∞ ∀ t > 0 and at t = 0 ∀z > 0, (3.1a)

v = 0, T = Tw0 at z → −∞ ∀ t > 0 and at t = 0 ∀z < 0, (3.1b)

where v0 is the remote asymptotic solution determined in (2.3). It should be noted that
only the tangential, x and y components of the velocities v and v0 must be identical
far from the wall surface at z → ∞, since the viscous boundary layer developed
near the wall–liquid interface and the propagation of the phase transition front can
generate an additional uniform flow in the vertical z direction.

The near-wall matching and jump conditions for the temperature field and for the
velocity are determined by the phenomena occurring during the liquid–wall contact.
They can be different depending on whether drop spreading is followed by phase
transition or not. Consider a solid–fluid or fluid–fluid interface z = Z∗(t). The matching
conditions represent the mass, momentum and energy balance at the interface, the
continuity of the shear stresses and temperature and the no-slip condition. The
matching conditions are slightly different depending on whether there is no phase
transition at the interface z =Z∗,

v = 0, �φq = 0, �(σ · ez) = 0, �T = 0, (3.2)

or the moving interface z =Z∗(t) corresponds to a phase change,

ρ(v · ez − Ż∗) = −
�φq

±L
= ṁ, �(σ · ez) = ṁ�(v · ez − Ż∗)ez, (3.3a)

T = T ∗, �(v × ez) = 0, (3.3b)
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where σ is the stress tensor, φq is the heat flux. A jump of a physical quantity x
through the interface z = Z∗(t) is defined here by �x = x(Z+) − x(Z−).

In the absence of the phase transition at the interface z = Z∗ the temperature T ∗

has to be determined from the solution, while the instantaneous phase transition rate
is equal to zero, ṁ= 0.

If z = Z∗(t) represents a moving phase transition front, the temperature T ∗ is a
thermodynamic property equal to the melting or boiling temperature (depending on
whether solidification, melting or evaporation takes place at the interface). The local
mass rate of phase transition ṁ in this case is not known a priori and has to be
determined from the solution. The value of L is equal to the latent heat of fusion or
latent heat of evaporation per unit mass, depending on the kind of phase transition
at the interface z =Z∗(t). The sign near L in the first expression (3.3a) is positive in
the case of liquid solidification or negative in the case of the substrate remelting or
liquid evaporation.

The flow and the temperature fields in the spreading drop have to satisfy the
continuity, momentum and energy balance equations (Bird, Stewart & Lightfoot
1960)

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.4a)

ρ
∂v

∂t
+ ρ (v · ∇) v = −∇p + ∇ ·

(
µ

[
∇v + ∇vT

]
− 2

3
µ(∇ · v)I

)
, (3.4b)

ρcv

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k∇T ), (3.4c)

where I is the unity tensor.
The viscosity, density, specific heat and thermal conductivity: µ = µ(T ), ρ = ρ(T ),

cv = cv(T ), k = k(T ), depend on the local temperature, on the local phase and material.

3.2. Similarity solution

We seek a solution in the following form, determined by the remote asymptotic
solution (2.3):

v = f (ξ )
(x + U0τ )ex + yey

t
− 2g(ξ )

√
ν0√
t

ez, (3.5a)

T = Tw0 + (Td0 − Tw0) Θ(ξ ), (3.5b)

where the dimensionless similarity variable is defined as

ξ =
z√
ν0t

. (3.6)

Here ν0 is the constant characteristic viscosity of liquid and
√

ν0t is the typical viscous
length.

For convenience we also define a local dimensionless temperature coefficient of a
physical property x as

Ax(T ) = (Td0 − Tw0)
1

x

dx

dT
. (3.7)

Since we consider variable material properties which depend on the temperature
but also on the local phase state and material, our similarity solution has to be
applicable to the entire field, which includes spreading liquid lamella, solid wall and
the intermediate region appearing as a result of the phase transition. The velocity field
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and the temperature distribution have to satisfy the following boundary conditions:

f = 1, Θ = 1,
∂p

∂x
=

∂p

∂y
= 0, at ξ → ∞, (3.8a)

f = g = 0, Θ = 0, at ξ → −∞. (3.8b)

The z component of the Navier–Stokes equations (3.4b) together with the boundary
conditions (3.8) immediately yield the form for the pressure field in the lamella:

p = ν0ρP (ξ )/t + P1(t), (3.9)

where the scaled pressure P (ξ ) can be evaluated integrating the ordinary differential
equation

P ′ + P AρΘ
′ + g + ξg′ + 4gg′ +

2ν

3ν0

[
2AµΘ ′(f + 2g′) + 4g′′ − f ′] = 0, (3.10)

ν(T ) being the local kinematic viscosity.
Since the pressure gradients in the x and y directions vanish, the corresponding

components of the Navier–Stokes equations (3.4b) can be simplified. The continuity
equation (3.4a), the energy equation (3.4c) and the Navier–Stokes equations (3.4b) in
the x and y directions can be rewritten in terms of the similarity variable ξ :

f − g′ − Aρ

4
(ξ + 4g)Θ ′ = 0, (3.11)

Θ ′′ + AkΘ
′2 +

Pr

2
(ξ + 4g)Θ ′ = 0, (3.12)

−f + f 2 − f ′

2
(ξ + 4g) − ν

ν0

(Aµf ′Θ ′ + f ′′) = 0, (3.13)

where the prime denotes the differentiation with respect to ξ and Pr(T ) = ν0ρcv/k is
the local Prandtl number. It should be noted that the scaled x and y components of the
Navier–Stokes equation lead to the same expression (3.13). This is a lucky coincidence
which allows us to describe axisymmetric and three-dimensional time-dependent
flows (3.5) generated by normal or oblique drop impacts using the same similarity
solution.

Equations (3.11)–(3.13) form a system of ordinary differential equations for the
scaled velocities, g(ξ ) and f (ξ ), and temperature, Θ , which can be easily solved
numerically if the material properties and their temperature dependencies are known
and if the boundary conditions near the wall surface are defined. Several examples
of various physical processes which can follow the lamella spreading are shown in
figure 2. The interface of phase transition is defined by ξ = Ξ ∗, where Ξ ∗ is a constant
which has to be determined from the solution.

The matching conditions are obtained from (3.2) for a solid–fluid or solid–solid
interface ξ =0 without phase transition,

g = 0, f = 0, �(kΘ ′) = 0, �Θ = 0, (3.14)

and the corresponding conditions for a fluid/fluid interface are

g = 0, �f = 0, �(µf ′) = 0, �(kΘ ′) = 0, �Θ = 0. (3.15)
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Figure 2. Examples of various thermodynamic processes following film spreading and
interfaces between different regions: (a) spreading without phase transition, (b) film boiling,
(c) film solidification and (d ) target melting. Interfaces with phase transition determined by
ξ = Ξ ∗ are shown by bold lines.

The matching and jump conditions for a moving solid–fluid boundary ξ = Ξ ∗ with
phase change are obtained from (3.3) in the following form:

ρ

(
2g +

Ξ ∗

2

)
= −Td0 − Tw0

±Lν0

�(kΘ ′), (3.16a)

Θ =
T ∗

Td0 − Tw0

, f = 0. (3.16b)

The corresponding matching and jump conditions at a moving fluid–fluid boundary
ξ = Ξ ∗ with phase change are

ρ

(
2g +

Ξ ∗

2

)
= −Td0 − Tw0

±Lν0

�(kΘ ′), �(µf ′) = 0, (3.17a)

Θ =
T ∗

Td0 − Tw0

, �f = 0. (3.17b)

In all the considered cases the similarity conditions are satisfied, since the variables
x, y, z and t do not explicitly appear in our expressions.

It should be noted that generally non-zero velocity field exists in the solid regions,
resulting from the thermal expansion. The velocity field in the solid is determined by
the temperature field and the thermal expansion coefficient, as well as by the elastic
and plastic properties of the material. These velocities, however, are usually much
smaller than the typical drop velocity and can be neglected in the present analysis.

4. Drop impact with solidification, constant thermophysical properties of
materials

Consider a simple particular case of drop impact with solidification, in which the
dependence of the material properties of drop, solder and target on temperature is
negligible. In the case when the thermophysical properties are independent of T , the
system (3.11)–(3.13) reduces to the following form valid for all three regions:

f = g′, (4.1a)

Θ ′′ +
Pr

2
(ξ + 4g)Θ ′ = 0, (4.1b)

g′′′ + 2gg′′ +
1

2
ξg′′ + g′ − g′2 = 0. (4.1c)
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Figure 3. Scaled components of the velocity of the liquid with phase transition at various
position of the interface ξ = Ξ ∗ obtained by the numerical integration of (4.1c).

Equation (4.1c) for the scaled velocity is identical to the corresponding self-similar
solution obtained in Roisman (2009).

We can subdivide the entire domain into three regions: solid target g = g′ = 0 at
ξ ∈]−∞, 0], solder (g = g′ =0) at ξ ∈ [0, Ξ ∗] and spreading liquid film at ξ ∈ [Ξ ∗, ∞[
(see figure 2c).

For simplicity we also neglect the change of the density of the drop material during
solidification.

4.1. The flow and the temperature distribution in the liquid drop

For the liquid flow, ξ > Ξ ∗, (4.1c) can be easily solved numerically subject to the
boundary conditions:

g = g′ = 0 at ξ = Ξ ∗ and g′ = 1 at ξ → ∞. (4.2)

In figure 3 the results of the numerical calculations of the scaled velocities g

and g′ are shown for various values of Ξ ∗. Each curve intersects the axis g = 0 (or
respectively g′ = 0) at ξ =Ξ ∗.

It can be shown that the scaled velocity g behaves like

g → ξ − Ξ ∗ − γ (Ξ ∗) at ξ → ∞, (4.3)

where the constant γ depends only on the position of the interface ξ = Ξ ∗ and has to
be found from the numerical solution of (4.1c). The value of Ξ ∗ + γ (Ξ ∗) corresponds
to a uniform vertical flow generated by an expansion of the viscous boundary layer
and propagation of the solidification front. In figure 4 the numerical predictions of γ

are shown as a function of Ξ ∗.
For convenience this function can be fitted by an exponential function of Ξ ∗ and

written in an explicit form:

γ ≈ 0.290

exp[0.351 Ξ ∗]
+

0.314

exp[0.0599 Ξ ∗]
. (4.4)

Approximation (4.4) is valid on the interval Ξ ∗ ∈ [−3, 15] and is used in subsequent
calculations of the temperature field.
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A general solution for the temperature field in the liquid drop is determined from
(4.1b):

Θ = C1 + C2I(Pr, Ξ ∗, ξ ), (4.5a)

I(Pr, Ξ ∗, ξ ) =

√
Pr√
π

∫ ξ

Ξ∗
exp

[
−Pr

4
χ2 − 2Pr

∫ χ

Ξ∗
g(ζ )dζ

]
dχ, (4.5b)

where C1 and C2 are integration constants, Pr = νρcv/k is the Prandtl number, and ζ

and χ are dummy variables.
The temperature at the interface ξ =Ξ ∗ is equal to the melting point temperature.

Therefore the scaled temperature distribution in the liquid drop which satisfies the
boundary conditions (3.8a) is

Θl(ξ ) = Θ∗ + (1 − Θ∗)
I(Pr l , Ξ

∗, ξ )

I(Pr l , Ξ ∗, ∞)
. (4.6)

4.2. Temperature distributions in the solid regions: target and splat

A general solution for the energy equation in the solid regions can be obtained by
substituting g = 0 in (4.5):

Θ = C3 + C4erfc

[
−

√
Prξ

2

]
, (4.7)

where the corresponding Prandtl number is defined on the base of the viscosity of
the liquid.

Let Θc denote the contact temperature at ξ = 0. The temperature distributions in
the wall, Θw , and in the splat, Θs , which satisfy the boundary conditions (3.14) are

Θw = Θc erfc

[
−

√
Prw

2
ξ

]
, (4.8a)

Θs = Θc + (Θ∗ − Θc)

erf

[√
Pr s

2
ξ

]

erf

[√
Pr s

2
Ξ ∗

] , (4.8b)
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where

Θc =
esΘz

es + ew erf

[√
Pr sΞ

∗

2

] . (4.8c)

Here, es =
√

ksρscs and ew =
√

kwρwcw are the thermal effusivities of the splat and
wall, respectively.

At this stage only the value of Ξ ∗ is not known. It has to be determined from
the boundary conditions related to phase change, in particular from the local heat
balance at the solidification front.

4.3. Drop solidification

The boundary conditions (3.16) for the temperatures Θl and Θs in the liquid and
splat regions yield

Ξ ∗ =
2Ste

Pr l

[
ks

kl

Θ ′
s(Ξ

∗) − Θ ′
l (Ξ

∗)

]
, (4.9a)

Ste =
cpl(Td0 − Tw0)

L
, (4.9b)

where Ste is the Stefan number and L is the latent heat of fusion per unit mass.
Finally, expression (4.9) with the help of (4.6) and (4.8) yields the following

transcendental integral equation for Ξ ∗:

ks

kl

SΘ∗ − L(1 − Θ∗) =
Pr l

√
π

2Ste
Ξ ∗, (4.10a)

where

L =

√
Pr l exp

[
−Pr l

4
Ξ ∗2

]
I(Pr l , Ξ ∗, ∞)

, (4.10b)

S =

ew

√
Pr s exp

[
−Pr s

4
Ξ ∗2

]

ewerf

[√
Pr s

2
Ξ ∗

]
+ es

. (4.10c)

This equation can be solved numerically if all the thermophysical parameters are
known.

Function L(Pr l , Ξ
∗) in (4.10) is not given in an explicit form since it involves

the integral function I(Pr l , Ξ
∗, ∞), which depends on the scaled velocity g(ξ ). On

the other hand, it can be easily evaluated for given Pr and Ξ ∗. The results of
calculations of L(Pr l , Ξ

∗) are shown in figure 5 for various Prandtl numbers. For
each Prandtl number the function L(Pr l , Ξ

∗) is a monotonously increasing function
of Ξ ∗. Negative values of Ξ ∗ correspond to the case of remelting of the substrate if
it is of the same material as the impacting liquid drop.

The dimensional height Z∗ of the solidification front increases in time and can be
expressed as

Z∗ = Ξ ∗√
νt. (4.11)

4.4. Drop impact without phase transition

Using the boundary conditions (3.8) and (3.14) in (4.5) and noting that g =0 at ξ < 0,
the following expressions for the temperature fields Θl and Θw in the liquid and solid
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regions are obtained:

Θl =
el + esI(Pr l , 0, ξ )

el + esI(Pr l , 0, ∞)
at ξ > 0, (4.12a)

Θw =
el

el + ewI(Pr l , 0, ∞)
erfc

[
−

√
Prw

2
ξ

]
at ξ < 0. (4.12b)

The corresponding dimensional contact temperature at z = 0 can now be determined
by

Tc =
elTd0 + ewI(Pr l , 0, ∞)Tw0

el + ewI(Pr l , 0, ∞)
, (4.13)

and the heat flux at the interface z =0 is

φq =
elew(Tw0 − Td0)

[el + ewI(Pr l , 0, ∞)]
√

π
√

t
. (4.14)

Dimensionless function I(Pr, 0, ∞) defined in (4.5b) can be calculated numerically
for various Prandtl numbers. The results of calculations are shown in figure 6. On the
entire range of the Prandtl numbers the value of I(Pr, 0, ∞) is smaller than unity.
In the limiting case Pr → ∞ (instantaneous contact of two solid semi-infinite bodies),
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Thermal Specific Latent heat Dynamic Melting
Material Density conductivity heat of fusion viscosity point

ρ (kgm−3) k (W m−1 K−1) (c) (J kg−1 K−1) h (J kg−1) µ (N s m−2) ◦C
Tin (liquid) 6970 33.6 243 60.9 × 103 1.917 × 10−3 –
Tin (solid) 6970 59.6 243 60.9 × 103 – 232.06
Stainless steel 8055 15.1 480 – – 1370–1400

Table 1. Thermophysical properties of materials used.

the value of I(Pr, ∞) approaches unity. These results explain the enhanced cooling
effect of drop or spray impact.

For very small Prandtl numbers, typical for liquid metals, the flow viscosity can be
neglected, the scaled velocity g(ξ ) can thus be approximated by its outer asymptotic
solution ξ − Ξ ∗ − γ (Ξ ∗), determined in (4.3), and the function I(Pr l , Ξ

∗, ∞) can be
estimated using (4.5b) by

I(Pr l , Ξ
∗, ∞) =

√
Pr l√
π

∫ ∞

Ξ∗
exp

[
−Pr l

4
χ2 − 2Pr l

∫ χ

Ξ∗+γ

(ζ − Ξ ∗ − γ )dζ

]
dχ

=

√
5

5
exp

[
−Pr l

5
(Ξ ∗ + γ )2

]
erfc

[√
Pr l

2
√

5
(Ξ ∗ − 4γ )

]
(4.15)

Linearization of (4.15) with respect to small Prandtl numbers yields

I(Pr, 0, ∞) ≈ 1√
5

+
4γ (0)

√
Pr l

5
√

π
, γ (0) ≈ 0.6. (4.16)

As shown in figure 6, the approximate solution (4.16) agrees well with the numerical
solution for the Prandtl numbers Pr l < 0.1.

5. Results and discussions
Consider an impact of a molten tin drop onto a thick stainless steel target. The

corresponding experimental results can be found in Aziz & Chandra (2000) and will
be used in this study for the theory validation. The thermophysical properties of these
materials are listed in table 1. Most of these data are taken from Dhiman & Chandra
(2005). The data for the thermal conductivity of solid tin are taken from open sources
(eFunda, Engineering fundamentals, www.eFunda.com).

In experiments of Aziz & Chandra (2000), a tin liquid drop impacts onto a stainless
steel substrate. The drop temperature at the instant of impact is Td0 = 236◦C. The
initial temperature of the substrate Tw0 has been varied in the experiments in the
range Tw0 ∈ [25◦C, 200◦C]. The measured contact temperature at the substrate surface
is much smaller than the theoretical predictions based on the temperature distribution
by heat conduction in two semi-infinite solid bodies instantaneously put in contact.
The process is assumed to be inert. Since the typical times of drop impact are rather
small, any additional processes, such as solute diffusion or intermetallic compound
formation, are not relevant to the considered problem.

In figure 7 the theoretically predicted jump of the contact temperature Tc − Tw0

at ξ = 0 is compared with the experimental data from Aziz & Chandra (2000) for
various drop impact velocities W0. Since the Prandtl number of the liquid drop,
Pr l = 0.0139, is much smaller than unity, the approximate expression (4.15) has been
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Figure 7. Spreading of a tin solidifying drop on a stainless steel substrate. Maximum increase
of the surface temperature for various initial substrate temperatures Tw0. Comparison of the
experimental data (Aziz & Chandra 2000) with the theoretical predictions. The drop initial
temperature is Td0 = 236◦C.
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Figure 8. Spreading of a tin solidifying drop on a stainless steel substrate. Dependence of
the scaled position of the solidification front Ξ ∗ on the initial substrate temperature Tw0. The
drop initial temperature is Td0 = 236◦C.

used for the estimation of the function I(Pr, 0, ∞). The agreement between the
theoretical predictions and the experimental data are rather good for the relatively
high-impact velocities W0 � 2 m s−1, corresponding to the high values of the Weber
number (We ∼ 102) relevant to the present study. Some decrease of the measured
contact temperature at smaller impact velocities can be explained by the increased
influence of capillary effects at impact with smaller Weber numbers (We ∼ 10).

In figure 8 the theoretical predictions for the scaled solidification front are shown
as a function of the initial substrate temperature. The value of Ξ ∗ reduces as the
initial temperature of the substrate increases. This is a consistent result since the lower
initial temperature of the substrate enhances the rate of drop solidification.

Now consider the impact of a liquid drop onto a solid substrate of the same
material. This case is relevant to spray coating or ice accretion on plane wings by
the impact of supercooled drops. In figure 9 the theoretically predicted values of
Ξ ∗ are shown as a function of the drop temperature for various initial temperatures
of the substrate for the impact of a liquid tin drop onto a solid tin substrate. The
substrate remelting (Ξ ∗) occurs at higher drop temperatures.
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Figure 9. Spreading of a liquid tin drop on a solid tin substrate. Estimated values of the scaled
front of phase transition at various drop and substrate temperatures. Ξ ∗ > 0 corresponds to
the drop solidification and Ξ ∗ < 0 corresponds to the substrate remelting.
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Figure 10. Spreading of a tin drop on a stainless steel substrate without phase transition.
Theoretically predicted contact temperature Tc in comparison with the solid–solid contact
temperature calculated using I(Pr, 0, ∞) = 1. The drop initial temperature is Td0 = 236◦C.

If the contact temperature predicted by (4.13) is higher than the melting point the
drop will not start to solidify. This case is shown in figure 10 for spreading of a liquid
tin drop on a solid stainless substrate. In this figure the theoretically predicted contact
temperature is compared with the solid–solid contact temperature, calculated using
I(Pr, 0, ∞) = 1, which is frequently used in the analysis of thermal effects associated
with drop impact. The difference between these two temperatures is significant, which
indicates the enhanced cooling effect of the liquid flow in the spreading drop.

At relatively long times after impact, the viscous and the thermal boundary layers
reach the upper free surface of the deforming drop. At this instant the boundary
conditions at this drop interface are not satisfied by our solution, which is therefore
no longer valid. Viscous forces lead to the quick velocity deceleration and formation
of a residual liquid film (Bakshi et al. 2007; Roisman 2009), even in the absence of
solidification. Nevertheless, the processes occurring during the earlier stages of drop
spreading, described in this study, often determine the residual film thickness and its
maximum diameter, geometry of splat and drop impact outcome.

It should be noted that the theory developed in this paper is based on a purely
analytical solution of the spreading problem relevant to drop impact with the relatively
high Reynolds and Weber numbers. In the present stage it does not account for some
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more complicated physical phenomena associated with phase transition, such as
homogeneous nucleation, kinetic effects in phase transition, diffusion or oxidation
of the materials, radiative heat transfer, flow instability leading to drop breakup or
formation of a rough, porous splat, etc. However, it is obvious that this solution can
be potentially used as a base flow for investigation of these important phenomena.

6. Conclusions
This study is devoted to the analysis of a fast forced non-axisymmetric spreading of

a liquid film generated by inclined drop impact onto a solid flat substrate. A similarity
solution for the combined full Navier–Stokes equations and energy equations is
obtained which allows us to predict the viscous flow and the temperature distribution
in the film even if the thermophysical parameters of the liquid and solid materials
depend on the temperature. The theory also allows us to describe the phase transition
initiated by drop impact and spreading, including drop solidification near the wall,
substrate remelting and drop evaporation. In the case of temperature-independent
thermophysical properties this theory predicts the rate of propagation of the phase
change front as a function of time, liquid viscosity, the Stefan and Prandtl numbers.

The theoretical predictions of the contact temperature in the case of drop
solidification agree well with the available experimental data. We have shown that this
temperature significantly differs from the well-known value of the contact temperature
based on the analysis of heat conduction in two solid bodies instantaneously put in
contact.

The theory has a wide range of industrial applications. These applications include
the modelling of thermal spray coating and forming, ice accretion and inkjet printing.

The author acknowledges financial support from the EU FP7 ‘EXTICE’ Project.
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